Reconstitution of the mitochondrial calcium uniporter in yeast.

نویسندگان

  • Erika Kovács-Bogdán
  • Yasemin Sancak
  • Kimberli J Kamer
  • Molly Plovanich
  • Ashwini Jambhekar
  • Robert J Huber
  • Michael A Myre
  • Michael D Blower
  • Vamsi K Mootha
چکیده

The mitochondrial calcium uniporter is a highly selective calcium channel distributed broadly across eukaryotes but absent in the yeast Saccharomyces cerevisiae. The molecular components of the human uniporter holocomplex (uniplex) have been identified recently. The uniplex consists of three membrane-spanning subunits--mitochondrial calcium uniporter (MCU), its paralog MCUb, and essential MCU regulator (EMRE)--and two soluble regulatory components--MICU1 and its paralog MICU2. The minimal components sufficient for in vivo uniporter activity are unknown. Here we consider Dictyostelium discoideum (Dd), a member of the Amoebazoa outgroup of Metazoa and Fungi, and show that it has a highly simplified uniporter machinery. We show that D. discoideum mitochondria exhibit membrane potential-dependent calcium uptake compatible with uniporter activity, and also that expression of DdMCU complements the mitochondrial calcium uptake defect in human cells lacking MCU or EMRE. Moreover, expression of DdMCU in yeast alone is sufficient to reconstitute mitochondrial calcium uniporter activity. Having established yeast as an in vivo reconstitution system, we then reconstituted the human uniporter. We show that coexpression of MCU and EMRE is sufficient for uniporter activity, whereas expression of MCU alone is insufficient. Our work establishes yeast as a powerful in vivo reconstitution system for the uniporter. Using this system, we confirm that MCU is the pore-forming subunit, define the minimal genetic elements sufficient for metazoan and nonmetazoan uniporter activity, and provide valuable insight into the evolution of the uniporter machinery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MCU encodes the pore conducting mitochondrial calcium currents

Mitochondrial calcium (Ca(2+)) import is a well-described phenomenon regulating cell survival and ATP production. Of multiple pathways allowing such entry, the mitochondrial Ca(2+) uniporter is a highly Ca(2+)-selective channel complex encoded by several recently-discovered genes. However, the identity of the pore-forming subunit remains to be established, since knockdown of all the candidate u...

متن کامل

Activity of the mitochondrial calcium uniporter varies greatly between tissues

The mitochondrial calcium uniporter is a highly selective channel responsible for mitochondrial Ca(2+) uptake. The mitochondrial calcium uniporter shapes cytosolic Ca(2+) signals, controls mitochondrial ATP production, and is involved in cell death. Here using direct patch-clamp recording from the inner mitochondrial membrane, we compare mitochondrial calcium uniporter activity in mouse heart, ...

متن کامل

Importance of mitochondrial calcium uniporter in high glucose–induced endothelial cell dysfunction

OBJECTIVE Mitochondrial Ca2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. METHODS Human umbilical vein endothelial cells were e...

متن کامل

The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

The mitochondrial calcium uniporter (MCU)-a calcium uniporter on the inner membrane of mitochondria-controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP); however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is obs...

متن کامل

Tissue-Specific Mitochondrial Decoding of Cytoplasmic Ca2+ Signals Is Controlled by the Stoichiometry of MICU1/2 and MCU

Mitochondrial Ca2+ uptake through the Ca2+ uniporter supports cell functions, including oxidative metabolism, while meeting tissue-specific calcium signaling patterns and energy needs. The molecular mechanisms underlying tissue-specific control of the uniporter are unknown. Here, we investigated a possible role for tissue-specific stoichiometry between the Ca2+-sensing regulators (MICUs) and po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 24  شماره 

صفحات  -

تاریخ انتشار 2014